Fourier Series - Prelude

\bullet From Sinusoid (sin(kx)sin(kx)) to Square Wave

1. Assume a function y=f(x)y = f(x)

  • defined on (π,π](-\pi, \pi]
  • discontinuous at x=0x = 0
y=f(x)={π4(π<x0)π4(0<xπ)y = f(x) = \begin{cases} &-\frac{\pi}{4} &\quad (-\pi < x \le 0) \\ &\frac{\pi}{4} &\quad (0 < x \le \pi) \end{cases}

clipboard.png

2. The Fourier Series of sin(kx)sin(kx)

y=f(x)=k=1bksin(kx)where bk={b2k=0b2k1=12k1\begin{align*} & y = f(x) = \sum_{k = 1}^{\infty} b_k sin(kx) \\ &\cdot where\ b_k = \begin{cases} &b_{2k} = 0 \\ &b_{2k-1} = \frac{1}{2k - 1} \end{cases} \end{align*}

3. Expand yy

y=f(x)=k=112k1sin(2k1)x=sinx+13sin3x+15sin5x+\begin{align*} y = f(x) &= \sum_{k = 1}^{\infty} \frac{1}{2k - 1} sin(2k - 1)x \\ &= sinx + \frac{1}{3} sin3x + \frac{1}{5}sin5x + \ldots \end{align*}
  • The shapes of three sinusoids

clipboard.png

  • sinx+13sin3x+15sin5xsinx + \frac{1}{3}sin3x + \frac{1}{5}sin5x

clipboard.png

  • k=11000012k1sin(2k1)x\sum_{k = 1}^{10000} \frac{1}{2k - 1} sin(2k - 1)x

clipboard.png

Tip

  • As we accumulate more sinusoids, f(x)f(x) approaches a square wave
  • n=300n = 300 is the boundary where our eyes can barely tell the difference between sinusoids and a square wave

Gibb’s Phenomenon

clipboard.png

  • Overshoot occurs near the jump of discontinuity in the singal
  • It’s an error with about 9%9\% of the jump size
  • It’s fixed when nn \rightarrow \infty

Trignometry Recap

clipboard.png

1. Properties

\cdot Even function

cos(x)=cos(x)cos(-x) = cos(x)

\cdot Odd function

sin(x)=sin(x)tan(x)=tan(x)\begin{align*} &sin(-x) = -sin(x) \\ &tan(-x) = -tan(x) \end{align*}

2. Basic Formulas

(i)cos2x+sin2x=1(ii)tanx=sinxcosx(iii)1+tan2x=1cos2x\begin{align*} &(i)&\quad cos^2x + sin^2x = 1 \\ &(ii)&\quad tanx = \frac{sinx}{cosx} \\ &(iii)&\quad 1 + tan^2x = \frac{1}{cos^2x} \\ \end{align*}

3. Addition Theorem

(i)cos(α±β)=cosαcosβsinαsinβ(ii)sin(α±β)=sinαcosβ±cosαsinβ\begin{align*} &(i)&\quad cos(\alpha \pm \beta) = cos\alpha \cdot cos\beta \mp sin\alpha \cdot sin\beta \\ &(ii)&\quad sin(\alpha \pm \beta) = sin\alpha \cdot cos\beta \pm cos\alpha \cdot sin\beta \\ \end{align*}

4. Double Angle Formulas

cos2α=cos2αsin2α=2cos2α1=12sin2α\begin{align*} cos2\alpha &= cos^2\alpha - sin^2\alpha \\ &=2cos^2\alpha - 1 \\ &=1-2sin^2\alpha \\ \end{align*} sin2α=2sinαcosαsin2\alpha = 2sin\alpha \cdot cos\alpha

5. Half Angle Formulas

(i)cos2α=(1+cos2α)2(ii)sin2α=(1cos2α)2\begin{align*} &(i)&\quad cos^2\alpha = \frac{(1 + cos2\alpha)}{2} \\ &(ii)&\quad sin^2\alpha = \frac{(1 - cos2\alpha)}{2} \\ \end{align*}

6. Product \rightarrow Sum Formulas

(i)cosαcosβ=12{cos(α+β)+cos(αβ)}(ii)sinαsinβ=12{cos(α+β)cos(αβ)}(iii)sinαcosβ=12{sin(α+β)sin(αβ)}\begin{align*} &(i)&\quad cos\alpha \cdot cos\beta = \frac{1}{2} \{cos(\alpha + \beta) + cos(\alpha - \beta)\} \\ &(ii)&\quad sin\alpha \cdot sin\beta = \frac{1}{2} \{cos(\alpha + \beta) - cos(\alpha - \beta)\} \\ &(iii)&\quad sin\alpha \cdot cos\beta = \frac{1}{2} \{sin(\alpha + \beta) - sin(\alpha - \beta)\} \\ \end{align*}

Periodic Functions

clipboard.png

  • Given xRx \in \R and LK\exists L \in K, f(x)f(x) is a periodic function of 2L2L
f(x+2L)=f(x)\begin{align*} &f(x + 2L) = f(x) \\ \end{align*}

1. sin(kx)sin(kx)

  • The period of sin(x)sin(x) is 2π2\pi
y=sin(x)L=2πy=sin(2x)L=2π2y=sin(3x)L=2π3y=sin(kx)L=2πk\begin{align*} &y = sin(x) \Rightarrow L = 2\pi \\ &y = sin(2x) \Rightarrow L = \frac{2\pi}{2} \\ &y = sin(3x) \Rightarrow L = \frac{2\pi}{3} \\ &\ldots \\ &y = sin(kx) \Rightarrow L = \frac{2\pi}{k} \\ \end{align*}
  • By adding every multiple the period, we derive a function with L=2πL = 2\pi
y=k=1bksin(kx)\begin{align*} y = \sum^{\infty}_{k = 1} b_k sin(kx) \end{align*}

2. Approximate the Function of Square Wave

Square Wave

y=f(x)(π<xπ)={π4(π<x0)π4(0<xπ)\begin{align*} y &= f(x) \quad (-\pi < x \le \pi) \\ &= \begin{cases} &\frac{-\pi}{4} &\quad (-\pi < x \le 0)\\ &\frac{\pi}{4} &\quad (0 < x \le \pi) \end{cases} \end{align*}

clipboard.png

Fourier Series

y=k=1sin(2k1)x2k1y = \sum_{k = 1}^{\infty} \frac{sin(2k-1)x}{2k-1}

clipboard.png

Tip

  • Both functions have the period of 2π2\pi
  • The discontinuities are shown with Gibb’s Overshoot.

Even and Odd Functions

clipboard.png

1. Even function

f(x)=f(x)aaf(x)dx=20af(x)dx\begin{align*} &\cdot f(-x) = f(x) \\ &\cdot \int_{-a}^{a} f(x)dx = 2\int_{0}^{a}f(x)dx \end{align*}
  • cos(x)cos(x)
ππcos(x)dx=20πcos(x)dx\int_{-\pi}^{\pi} cos(x)dx = 2\int_{0}^{\pi}cos(x)dx

2. Odd function

f(x)=f(x)aaf(x)dx=0\begin{align*} &\cdot f(-x) = -f(x) \\ &\cdot \int_{-a}^{a} f(x)dx = 0 \end{align*}
  • sin(x)sin(x)
ππsin(x)dx=0\int_{-\pi}^{\pi} sin(x)dx = 0

Important

Properties

even×even=evenodd×odd=eveneven×odd=odd\begin{align*} &\cdot \quad even \times even = even \\ &\cdot \quad odd \times odd = even \\ &\cdot \quad even \times odd = odd \end{align*}

Trignometry and Integration

ππcos(mx)dx=0ππsin(mx)dx=0ππsin(mx)cos(nx)dx=0ππcos(mx)cos(nx)dx={π(m=n)0(mn)ππsin(mx)sin(nx)dx={π(m=n)0(mn)\begin{align} &\int_{-\pi}^{\pi} cos(mx)dx = 0 \quad \quad \int_{-\pi}^{\pi} sin(mx)dx = 0 \quad \quad \\ &\int_{-\pi}^{\pi} sin(mx) \cdot cos(nx)dx = 0 \quad \quad \\ &\int^{\pi}_{-\pi} cos(mx) \cdot cos(nx)dx = \begin{cases} \pi \quad(m = n) \\ 0 \quad(m \ne n) \end{cases} \\ &\int^{\pi}_{-\pi} sin(mx) \cdot sin(nx)dx = \begin{cases} \pi \quad(m = n) \\ 0 \quad(m \ne n) \end{cases} \end{align} \\

where

  • n,mNn, m \in \mathbb{N}

(1) Integration of the sinsin and coscos functions

ππcos(mx)dx=0\cdot \int_{-\pi}^{\pi} cos(mx)dx = 0

ππcos(mx)dx=1m[sin(mx)]ππ=1m[sin(mπ)sin(mπ)]=1m[sin(mπ)+sin(mπ)]sin(mπ)=01m[sin(mπ)+sin(mπ)]=00\begin{align*} \int_{-\pi}^{\pi} cos(mx)dx &= \frac{1}{m} [sin(mx)]^{\pi}_{-\pi} \\ &= \frac{1}{m} [sin(m\pi) - sin(-m\pi)] \\ &= \frac{1}{m} [sin(m\pi) + sin(m\pi)] \\ &\because sin(m\pi) = 0 \\ &\therefore \frac{1}{m} [sin(m\pi) + sin(m\pi)] = 0 \\ &\Rightarrow 0 \end{align*}

ππsin(mx)dx=0\cdot \int_{-\pi}^{\pi} sin(mx)dx = 0

ππsin(mx)dx=1m[cos(mx)]ππ=1m[cos(mπ)cos(mπ)]=1m[cos(mπ)cos(mπ)]cos(mπ)=11m[cos(mπ)+cos(mπ)]=00\begin{align*} \int_{-\pi}^{\pi} sin(mx)dx &= -\frac{1}{m} [cos(mx)]^{\pi}_{-\pi} \\ &= -\frac{1}{m} [cos(m\pi) - cos(-m\pi)] \\ &= -\frac{1}{m} [cos(m\pi) - cos(m\pi)] \\ &\because cos(m\pi) = -1 \\ &\therefore \frac{1}{m} [cos(m\pi) + cos(m\pi)] = 0 \\ &\Rightarrow 0 \end{align*}

(2) ππsin(mx)cos(nx)dx=0\int_{-\pi}^{\pi} sin(mx) \cdot cos(nx)dx = 0

ππsin(mx)odd funccos(nx)even funcdxodd×even=oddππsin(mx)cos(nx)dx=0\begin{align*} &\int_{-\pi}^{\pi} \underbrace{sin(mx)}_{odd\ func} \cdot \underbrace{cos(nx)}_{even\ func} dx \\ &\because odd\times even = odd \\ &\therefore \int_{-\pi}^{\pi} sin(mx) \cdot cos(nx)dx = 0 \end{align*}

(3) π_πcos(mx)cos(nx)dx={π(m=n)0(mn)\int^{\pi}\_{-\pi} cos(mx) \cdot cos(nx)dx = \begin{cases} \pi \quad(m = n) \\ 0 \quad(m \ne n) \end{cases} \\

(m=n)\cdot (m = n)

ππcos(mx)cos(nx)dx=ππcos2(mx)dx=ππcos2(mx)dx(Half angle formula)=12[ππdx+ππcos(2mx)dx0]=π+0=π\begin{align*} &\int^{\pi}_{-\pi} cos(mx) \cdot cos(nx)dx \\ &= \int^{\pi}_{-\pi} cos^2(mx) dx\\ &= \int^{\pi}_{-\pi} cos^2(mx) dx\quad\quad (\text{Half angle formula})\\ &= \frac{1}{2}[\int^{\pi}_{-\pi} dx + \underbrace{\int^{\pi}_{-\pi} cos(2mx)dx}_{0}] \\ &= \pi + 0 \\ &= \pi \end{align*}

(mn)\cdot (m \ne n)

ππcos(mx)cos(nx)dx=12ππcos(mx+nx)+cos(mxnx)dx=12[ππcos(mx+nx)+ππcos(mxnx)dx]=12[ππcos(m+n)xdx0+ππcos(mn)xdx0]=0\begin{align*} &\int^{\pi}_{-\pi} cos(mx) \cdot cos(nx)dx \\ &= \frac{1}{2}\int^{\pi}_{-\pi} cos(mx + nx) + cos(mx-nx)dx\\ &= \frac{1}{2}[\int^{\pi}_{-\pi} cos(mx + nx) + \int^{\pi}_{-\pi} cos(mx-nx)dx]\\ &= \frac{1}{2}[\underbrace{\int^{\pi}_{-\pi} cos(m + n)xdx}_{0}+ \underbrace{\int^{\pi}_{-\pi} cos(m-n)xdx}_{0}]\\ &= 0 \end{align*}

(4) ππsin(mx)sin(nx)dx={π(m=n)0(mn)\int^{\pi}_{-\pi} sin(mx) \cdot sin(nx)dx = \begin{cases} \pi \quad(m = n) \\ 0 \quad(m \ne n) \end{cases} \\

Tip

The proof is the same as the one given in (3)


Inner Product and Norm

  • Given two functions ff and gg that are continuous on the closed interval [π,π][-\pi, \pi]
The inner product of f and g(f,g)=ππf(x)g(x)dx\begin{align*} &\cdot \text{The inner product of $f$ and $g$: } \\ &\begin{align} (f, g) = \int_{-\pi}^{\pi} f(x)g(x) dx \quad\quad \end{align} \\ \end{align*} The norm (magnitude) of f is: f=(f,f)=ππ{f(x)}2dx\begin{align*} &\cdot \text{The norm (magnitude) of $f$ is: } \\ &\begin{align} ||f|| = \sqrt{(f, f)} = \sqrt{\int_{-\pi}^{\pi} \{f(x)\}^2 dx} \quad\quad \end{align} \end{align*}

Orthogonality relations of trigonometric functions

  1. Constant vs. cosine and sine
ππcos(mx)dx=0(1,cos(mx))=0\int_{-\pi}^{\pi} \cos(mx)\, dx = 0 \quad \Rightarrow \quad (1, \cos(mx)) = 0 ππsin(mx)dx=0(1,sin(mx))=0\int_{-\pi}^{\pi} \sin(mx)\, dx = 0 \quad \Rightarrow \quad (1, \sin(mx)) = 0

So, the constant function 11 is orthogonal to both cos(mx)\cos(mx) and sin(mx)\sin(mx).


  1. Sine vs. cosine
ππsin(mx)cos(nx)dx=0(sin(mx),cos(nx))=0\int_{-\pi}^{\pi} \sin(mx)\cos(nx)\, dx = 0 \quad \Rightarrow \quad (\sin(mx), \cos(nx)) = 0

Thus, sine and cosine are orthogonal to each other.


  1. Cosine vs. cosine
ππcos(mx)cos(nx)dx={πm=n0mn(cos(mx),cos(nx))={πm=n0mn\int_{-\pi}^{\pi} \cos(mx)\cos(nx)\, dx = \begin{cases} \pi & m = n \\[6pt] 0 & m \ne n \end{cases} \quad \Rightarrow \quad (\cos(mx), \cos(nx)) = \begin{cases} \pi & m = n \\[6pt] 0 & m \ne n \end{cases}
  1. Sine vs. sine
ππsin(mx)sin(nx)dx={πm=n0mn(sin(mx),sin(nx))={πm=n0mn\int_{-\pi}^{\pi} \sin(mx)\sin(nx)\, dx = \begin{cases} \pi & m = n \\[6pt] 0 & m \ne n \end{cases} \quad \Rightarrow \quad (\sin(mx), \sin(nx)) = \begin{cases} \pi & m = n \\[6pt] 0 & m \ne n \end{cases}