Beta and Gamma Distribution Proofs
Γ Function
Definition
Γ(p)=∫0∞xp−1e−xdx

Properties
- Γ(p+1)=pΓ(p)=p!
- Γ(1)=1
- Γ(21)=π
- Γ(2n)={(2n−1)!(n is even)(2n−1)(2n−2)⋯23⋅21π(n is odd)
B Function
B(p,q)=∫01xp−1(1−x)q−1dx(p>0,q>0)
B(p,q)=Γ(p+q)Γ(p)+Γ(q)
TO-DO: Proof for the gamma form