Distribution Proofs
Properties of Binomial Distribution
μ=np
μ=k=0∑nk(nk)pk(1−p)(n−k)=nk=0∑n(n−1k−1)pk(1−p)(n−k)(PropertyofCombination)=npk=0∑n(n−1k−1)pk−1(1−p)(n−k)=npk=0∑n−1(n−1k)pk(1−p)(n−k−1)(Binomial Theorem)=np(p+(1−p))(n−1)=np
Tip
- Property of Combination
r⋅(nr)=n⋅(n−1r−1)
- Binomial Theorem
(a+b)n=∑k=0n(nk)akb(n−k)
σ2=np(1−p)
σ2=k=0∑nk2(nk)pk(1−p)(n−k)−(np)2=npk=1∑nk(n−1k−1)pk−1(1−p)n−k−(np)2=npk=0∑n−1(k+1)(n−1k)pk(1−p)n−k−1−(np)2=np[∑k=1n−1k(n−1k)pk(1−p)n−k−1+np∑k=1n(n−1k)pk(1−p)n−k−1]−(np)2=np((n−1)p+1)−np=n2p2−np2+np−n2p2=np−np2=np(1−p)